The Psychology of Novelty-Seeking, Creativity and Innovation: Neurocognitive Aspects Within a Work-Psychological Perspective

Tanja Sophie Schweizer

Curiosity is, in great and generous minds, the first passion and the last.

Samuel Johnson, 1751

Why are some people constantly on the move towards something new, while others feel comfortable with what there is? What motivates us to seek for the new? What helps us in finding it? What leads us to transform what we find into a product that is visible to others and expose us to their judgement? Research in psychology holds fascinating insights concerning the above questions. Surprisingly, neurocognitive and neuropsychological insights that could lead to a better understanding of the processes of novelty-seeking and novelty-finding, have received little attention in the creativity and innovation literature. Especially for those working in professions where the generation of the new is the core business, it would be highly relevant to know more about those biological parameters of novelty generation and especially how they make human beings behave in professional environments. Such knowledge can not only improve human resource management in creative work settings, but also help creative professionals to better understand and manage themselves. The Novelty Generation Model (NGM) introduced in this article offers a new perspective.

A key feature of finding something new and being creative is the ability to think in ways that differ from established lines of thought, for instance by associating previously unrelated elements with each other. From a neuropsychological point of view, highly novelty-seeking individuals and above-average novelty-finders can be identified by particular sets of neurocognitive traits and styles of thinking that also require specific work conditions. In this article, neurocognitive and neuropsychological findings that have remained unused in the creativity and innovation literature are given a place next to the personality and social psychological insights that are already established. Based hereupon, novelty-seeking, creativity and innovative performance are proposed as key components of the novelty generation process in a new model: the Novelty Generation Model (NGM). Specific motivational states, neurocognitive and personality traits as well as social environments affect the three related components of novelty-seeking, creativity and innovative performance. Distinguishing between these components with their different inputs allows researchers and practitioners to identify more accurately the critical switches where dysfunctions may occur in the process of generating a novelty, dysfunctions that may not only be of psychological, but also economic consequence. Awareness of these potential dysfunctions can bring about far more fine-grained and adequate measures of support for each of these three processes in creative work settings.

The article concludes with practical applications that illustrate the value of the NGM and its related knowledge in professional environments.

Neurocognitive Aspects of the Novelty Generation Process

Within the genetic, neurocognitive and neuropsychological research fields there are a
number of potential starting points for opening up this body of knowledge for researchers and practitioners interested in a better understanding of the novelty generation process. First of all, it has been discovered that novelty-seeking behaviour is related to individual differences in specific neurotransmitter activity in the brain. It has been argued that the novelty-seeking personality is modulated by the transmission of the neurotransmitter dopamine (Cloninger, 1994). Specific genes determining this transmission (DRD4, DRD2-A2, SLC6A3-9) have been labelled ‘novelty-seeking genes’ (Benjamin et al., 1996; Ebstein et al., 1996; Lerman, et al., 1999; Prolo & Licinio, 2002). Highly novelty-seeking individuals are at a higher risk of falling prey to particular patterns of psychological dysfunctioning, most notably attention deficits and addictive behaviours (Cloninger et al., 1994) that may also influence their social interaction patterns in professional environments. The link between an individual’s novelty-seeking personality and his/her creativity crucially depends on the degree to which an individual is a novelty-seeker, mainly related to the individual’s dopamine levels, and requires the matching forms of support by those who seek to manage their creative process (Schweizer, 2004).

Being a ‘creative genius’ has been argued to emerge from configurations of multiple genes all interacting with each other (Lykken, McGue & Tellegen, 1992). Creativity can be seen as a particular kind of response style (MacKinnon, 1962) and activities of problem-seeking, problem-finding and problem-solving (Getzels & Csikszentmihaly, 1975; Kasperson, 1978). Research on creative cognition can best ‘identify traditional areas in cognitive psychology and cognitive science that could be explored in a more creative way, such as mental imagery, concept formation, categorization, memory retrieval, analogical reasoning, and problem-solving’ (Finke, Ward & Smith, 1992, p. 189). In order to find something new, focused attention is necessary, but also the defocusing of attention: creative thinking involves intuitive leaps, which are facilitated by states of unfocused relaxation, low levels of cortical and frontal-lobe activation and more right than left hemisphere activation (Martindale, 1999). Also, associative capabilities (Mednick, 1962), especially between remotely associated items, have long been identified as a key cognitive marker of creativity. Latent inhibition (LI) is another key to creative cognition: low latent inhibition, referring to a tendency to have – put simply – many things on your mind at the same time, is linked with higher creative achievement (Carson, Peterson & Higgins, 2003). Low LI individuals continuously experience a higher number of stimuli simultaneously because they ignore less than those with average or high LI scores. This may also related to the concept of lateral thinking suggested as an aspect of creativity, that is, seeing things broadly and from various perspectives (DeBono, 1992).

Neurocognitive characteristics of creative processes are highly under-researched but gradually gaining ground in brain research (Schweizer et al., 2006). Understanding such neurocognitive parameters in the creative process means learning more about why people behave the way they behave and how one can best deal with them when it comes to dysfunctional behaviours in the work environment. The application of such knowledge to human resource management is a new stream of creativity research at the borders of the organizational sciences, neuropsychology and cognitive neuroscience. Crossing these interdisciplinary borders forms a major challenge.

Personality and Social Psychological Views on Creativity and Innovation

How can the above type of knowledge be linked to personality psychology and social psychological insights that have a more established place in the creativity literature? Personality traits that are widely accepted as supporting creativity are, for instance, judgemental autonomy, self-confidence, risk-taking, non-conformity, independence and a critical attitude towards norms (Amabile, 1983a; Eysenck, 1993; Feist, 1998; Kasof, 1995; MacKinnon, 1965). But there is also some research in the personality literature related to novelty and curiosity that comes closer to the neurocognitive tendencies discussed above. For instance, Berlyne in the 1960s distinguished various types of novelty and different forms of exploratory behaviour, as well as diverersive curiosity, which includes the seeking of novelty or complexity driven by a state of boredom, and epistemic curiosity, defined as driven by the need to resolve uncertainty concerning perceptual or symbolic representation (Berlyne, 1960). In the 1970s, Pearson developed his so-called novelty-experiencing scales (NES) around the construct tendency towards novelty as a behaviour of approaching novelty contrary to avoiding novelty (Pearson, 1970). In the 1990s a concept called novelty-seeking is included in the Temperament and Character Inventory (TCI), where novelty-seeking is defined as a temperament factor that is ‘viewed as a heritable bias in the activation or initiation of behavior such as frequent
ment that either support (so-called promotion influenced by cues perceived in the environment) or interfere (so-called prevention cues) with an individual’s likelihood to be creative (Friedman & Förster, 2000, 2001). Parents with higher educational status may act as promoters by providing ‘environmental contributions to their child’s intellectual ability and also may encourage exploratory, socially stimulating behaviors’ (Raine et al., 2002). Exposure to creative role-models supports creative individuals in their development (Bandura, 1977; Simonton, 1975). Social comparison is one way for an individual to find his or her way in the creative process. However, it is not only individuals who compare themselves to others, but also those who see the products of their creative process compare them to others. So second, social comparison and judgement processes are also key for being attributed the label ‘creative’. Marcel Duchamp presented a urinal to the world and it became a famous artwork, because the art world at some point recognized the novelty in its presentation. Individuals can display novelty-seeking and creative behaviour, but only the judgement by others may label the results from this behaviour as new, that is: ‘innovative’. It is a long-established idea in the psychological literature that the judgement of knowledgeable others such as experts, peers or supervisors are key in assessing the value of an individual’s contribution (Getzels & Csikszentmihaly, 1975; MacKinnon, 1962). How such judgement processes are managed in real decision-making processes in the creative industries has been explored, for instance in the context of Hollywood pitch meetings: here decision-makers judged the creative potential of applicants by matching individuals with creative and uncreative prototypes. How the applicants matched with the decision-makers themselves also played an important role (Elsbach & Kramer, 2003).

Clearly, an innovation is not ‘something new’, but more appropriately referred to as ‘something that is judged as new’, thus a label resulting from a social comparison and judgement process – a label that can disappear from the product again, for instance if it enters another environment in which social judges do not consider this product as new. What role do neurocognitive aspects have in this social judgment process? Whether such judgements are intrinsically motivated in the sense that judges do really perceive novel stimuli in a product or whether it is extrinsically motivated by the social desirability or obligation felt by judges to ‘declare a product an innovation or non-innovation’ are two very different situations. After all, this process also requires the ability to perceive novelty and distinguish it from non-novelty, an ability that requires
may have interfered with what follows the creative process, namely the process of achieving innovative performance that would require the child’s ability to present its creative products to the social environment and obtain recognition for it.

If we had a model that distinguished creativity from innovative performance as different components of the novelty generation process, those above effects of shyness could better be located and understood. Various components and phases of creativity have been distinguished in the literature before, for example, the phase of preparation when individuals direct their attention to a particular topic and gather information within themselves and their environment; followed by an incubation phase in which conscious work stops and attention is directed to other things, while unconsciously the creative process continues; then the illumination, the moment when new insight suddenly comes to mind; and lastly the verification phase, in which logical and rational thought comes in again to turn the new insight into something apparent to others (Wallas, 1926). Similarly, it was suggested that creativity can be best conceptualized as a syndrome involving a number of elements: (a) the processes underlying the individual’s capacity to generate new ideas or understandings, (b) the characteristics of the individual facilitating process operation, (c) the characteristics of the individual facilitating the translation of these ideas into action, (d) The attributes of the situation conditioning the individual’s willingness to engage in creative behavior, and (e) the attributes of the situation influencing evaluation of the individual’s productive efforts’ (Mumford & Gustafson, 1988, p. 28)

The question is: does this last element about the evaluation by the social environment really belong under the header of the creative process as such? Is this not a factor belonging to the achievement of innovative performance rather than creativity? The term ‘creativity’ may have been overstretched in recent decades.

It solves some theoretical and methodological problems to model the novelty generation process as a whole and make clear conceptual distinctions between the seeking for novelties, followed by the finding of a novelty and transforming it into a product visible to others, and finally innovative performance, which stands for the social recognition that the producer of a novelty can receive in this world. Such a model would for instance account for scenarios in which a highly novelty-seeking individ-
ual may create comparatively few novel products, or s/he may create novel products but still end up with a low innovative performance record. Where in the entire process of generating a novelty can the individual become stuck?

The Novelty Generation Model (NGM) (Figure 1) can help to gain more insights on such key functions and dysfunctions in the process of generating something new (Schweizer, 2004). In this conceptual model I present the process of novelty-seeking as the first component in the onset of the whole novelty generation process, followed by creativity as a second component consisting of two main processes: novelty-finding and production of the novelty, which in turn is followed by innovative performance, in which a product is presented to a wider social environment. Within the NGM’s notion of creativity, novelty-finding occurs when an individual has the neurocognitive traits that allow him or her for instance to come up with unusual combinations, an ability detected by creativity tests such as the RAT (Remote Associates Test) or ‘Unusual uses of objects’ tests like the ‘brick test’. Following this process component, an individual may decide to transform novel insights/findings into observable products and we may say that someone has been ‘creative’, which in turn is the necessary condition for the following process component: a novelty entering the process for innovative performance. This final component in the process of generating a novelty – innovative performance – depends on the individual’s interaction with the social environment in which the novelty is presented. Here, co-operativeness, a factor in the TCI assumes a central role, just as extraversion and sociability in the Five-Factor-Model help in presenting one’s products to a social environment. The willingness and the ability to interact with the environment to get a product socially judged and recognized as novel supports the achievement of innovative performance. History teaches the main difference between creativity and innovative performance: those with the great ideas have not necessarily received the social recognition for it; often the recognition has been harvested by others who were able to convince the environment about those ideas. And still others may not have sought for something novel, but have found something novel by chance and done something with it. Or innovative performance may have been assigned to products that are not novel at all. These examples are to emphasize: the process of novelty generation is not

Figure 1. The Novelty Generation Model (NGM)
necessarily as linear as the NGM’s ideal-typical framing of the novelty generation process depicts.

The NGM differs from the most widely accepted models suggested by Wallas (1926), Amabile (1983b) and Mumford and Gustafson (1988) in that it clearly treats creativity as only one component within the wider process of novelty generation, and it also pays attention to the neurocognitive/neuropsychological traits supporting it. In such an approach, relevant neurocognitive as well as personality traits can be clearly related to the different components. At the same time it becomes possible with the NGM to elaborate on the motivational inputs to each of the different sub-processes by indicating the different needs of the individual and also where they may work as either intrinsic or extrinsic motivators. For example, the NGM helps to visualize the problem that occurs when individuals seek and/or find novelties with motivations other than those of satisfying their needs for cognition: extrinsic motivators are at work then. This is for instance the case when achievement needs – which do function well as intrinsic motivators in achieving innovative performance – assume motivating roles in other components of the novelty generation process. And finally, the critical switches in the transition from novelty-seeking to novelty-finding and novelty-producing, and then to innovative performance become investigable on the basis of the NGM. For instance, the NGM allows for identifying individuals with extremely high novelty-seeking scores that can make them jump from idea to idea without finishing the phases of transforming the ideas into presentable products and dealing with the social judgement process. Extremely high novelty-seekers are neuropsychologically at risk of being highly distractible and having short attention spans. It has been argued that it is not the highly above-average novelty-seeking personality, but rather a personality marked by slightly above average novelty-seeking scores that provides the optimal basis for the novelty generation process (Schweizer, 2004). Clearly, more in-depth research is required to better understand the novelty-seeking and novelty-finding processes, their neurocognitive and neuropsychological correlates (also encoded in experience and skills) as well as their behavioural implications in the creative work process.

Practical Implications of the NGM for Creative Work Environments

The processes of novelty generation can occur in any occupational field, but in some professions they are essential: art, science, advertising or haute couture are good examples of fields where the generation of the new is the core business. In such settings the interaction between creative staff on the one hand and operational staff on the other often becomes a key management issue. This can also include interactions between departments or business units. R&D departments are an example of units to which the generation of novelties is central. But in departments and professions where novelty generation is not the essential task creativity also increasingly plays a role. Historically, the overall share of novelty generation processes across all professions was much smaller than it is in today’s fast and competitive environments, where the generation of new contents, styles and designs has become an essential ingredient of the survival of firms.

The NGM is meant to represent the basis for a toolbox that can be used by two particular groups of professionals involved in the novelty generation process: first of all, those who directly operate in creative work environments; second, the group of individuals who take more facilitative roles, for instance as support staff for creative staff, or who are involved in personnel selection or human resource management in the widest sense. The first group directly involved in the novelty generation process may find the NGM and its related body of knowledge helpful for analysing their own novelty generation processes, for instance along the following sets of questions:

Where are my strengths and weaknesses within the whole process of generating a novelty: in the seeking of novelties? In finding them? In transforming my findings into products? How am I doing when it comes to finding public recognition for my products?

Can I get really excited about things? Do I get easily bored? Do I take pleasure in thinking about things in unusual ways? Can I step back from a problem and let its solution come up in me in a relaxed mode? Do I have a tendency to jump to new projects without finishing them? Do I feel confident about my own creativity? Do I like to present my ideas and my work in public or do I have a tendency to keep my ideas to myself?

What motivates me to generate novelties? Am I genuinely enthusiastic about my work? How important is it for me to produce something and see for myself that I can do it? To what degree am I concerned
with what others will think about it? How important is it for me to get the public recognition of others for it?

Where are the links in my novelty generation processes that could be improved? What kinds of training could help me to better handle myself in the critical switches of the process? Do I receive the social support I need for seeking and finding novelties, producing them and presenting them to others? Can I accept support from others at all? What are the main sources of support I draw on? Do I experience a sense of well-being in my work environment?

On the other hand, people who are indirectly involved in the novelty generation process, for instance those who manage creative staff, may also benefit from the NGM and its related knowledge. Most importantly, they can support those who are directly involved in the novelty generation process by creating awareness of dysfunctional switches in their work process and develop adequate support strategies with and for them. In order to further illustrate the managerial value of the NGM, some practical examples will be offered in the following. Some of these examples also indicate the direct benefit of neurocognitive and neuropsychological knowledge within creative work scenarios.

- **Creative staff selection.** Human resource managers still have a rather limited set of criteria for the decision-making process concerning the selection of new staff for creative positions. In particular, how to determine the specific role that new employees are the fittest to take within the entire novelty generation process is an important issue. Screening for the neurocognitive and personality markers that support work in the different components of the NGM can facilitate the decision-making process.

- **Training creative staff.** For existing staff an identification of the individuals’ personality and neurocognitive strengths as well as deficits affecting the novelty generation process would be a worthwhile HRM policy.

- **Managing addictive behaviours in workplaces.** This issue is currently rising in importance, for instance in the context of internationally diffusing non-smoking policies in office spaces. From a neuropharmacological perspective the physical need for nicotine during the novelty generation process can be explained by its facilitative effect in deliberate and focused creative problem-solving (similar to caffeine). On the other side of the spectrum there is the consumption of alcohol to achieve a down-regulation of the prefrontal cortex and the relaxation that supports more spontaneous creative problem-solving. Alcohol abuse is also known to be widely spread in the creative professions. According to recent research in the neurosciences and neuropsychology, neural pathways can be trained in order to achieve effects that are able to substitute for the effects of the above-mentioned drugs. Stimulating the training and use of these alternatives during work hours could help employees maintain good productivity within a drug-wise restricted environment.

- **Detecting compensatory behaviours.** Weaknesses in one of the components of the novelty generation process are often compensated by excessive activity in the other components. Recognizing such compensatory behaviours can help re-directing the employee’s energies into his/her deficient components.

- **Composition of work teams.** The value of composing teams in a way that optimally covers the different components of the novelty generation process can become particularly obvious in critical moments of the novelty generation process. A good example here is the case of a research team confronted with completely unexpected research results shortly before a deadline. Whereas neurocognitively more rigid team members can provide good structure to the overall process, they often respond less constructively in drastically changed situations and under extreme time-pressure. In contrast, team members with more flexible cognitive styles of thinking may be more able to shift between different cognitive sets, which makes them more likely to respond in a constructive way to the changed situation, seeking out new opportunities and thereby realizing creative potential in such disruptive situations. Joined in a team, different sets of capabilities further the novelty generation process at different points in time.

- **Handling employees’ stress, fatigue and absence records.** Job dissatisfaction, stress or above-average absence records among creative staff can be symptoms of deeper-lying dissociations within the novelty generation process. Examples are: extremely novelty-seeking individuals who may experience strong limitations in their working environment wasting their novelty-seeking and creative energy; vice versa, individuals with a neurocognitive set-up that is less supportive for novelty-seeking and novelty-finding activities often draw mainly on extrinsic motivations such as social achievement. In professions in which creative out-
puts are part of the job definition this can cause excessive work pressure to the individual. The identification and dissolution of such distortions in the working process form an important part of managing the well-being and productivity of employees.

These were only a few practical examples indicating starting points for a managerial application of the NGM and the body of knowledge it represents. The examples also illustrate that the psychosocial chain of novelty-seeking, creativity and innovative performance is flexible to some degree, but also fragile. The social inability to manage the needs of potential novelty generators comes with high costs for all those involved. What is more, in a wider perspective, inestimable societal costs occur where investments disappear in innovation processes that are not sufficiently fed by novelty-seeking, finding and producing, but by a self-sustaining network of social judges acknowledging the production of a novelty even where there is none. A society as a whole is served best if occupational and organizational decisions in novelty-generating professions are informed by an in-depth knowledge of the psychological factors underlying the generation of the new. The above examples are also meant to draw attention to the need for theory-building and empirical testing concerning the critical switches of the novelty generation process discussed in this article. Lastly, it became obvious that the elaboration of the practical implications of neurocognitive and neuropsychological insights for both, managerial use on the one hand and self-knowledge of the creative staff themselves on the other, is still in its infancy and would certainly deserve more attention in creativity and innovation research. Hopefully this article has opened up this debate and provides impulses for future research into these particular work-psychological issues. Notably, these issues also hold the keys to understanding the unique pleasure that can be experienced during such creative research work.

References

Amabile, T.M. (1983a) The social psychology of creativity. Springer-Verlag, New York.
information channels. Psychological Reports, 42, 691–4.

Tanja Sophie Schweizer (ts.schweizer@psy.vu.nl) works as an assistant professor in the Clinical Neuropsychology Department of the Vrije Universiteit Amsterdam in The Netherlands. Her research interests cover the neurocognitive aspects of creative activity also relating to her earlier research at the Rotterdam School of Management on the human resource management aspects of creativity. Her specialization is brain research using Functional Magnetic Resonance Imaging (fMRI) during creative tasks. The findings of her brain research are combined with work-psychological applications.